Pure gaps on curves with many rational places

نویسندگان

  • Daniele Bartoli
  • Ariane M. Masuda
  • Maria Montanucci
  • Luciane Quoos
چکیده

We consider the algebraic curve defined by $y^m = f(x)$ where $m \geq 2$ and $f(x)$ is a rational function over $\mathbb{F}_q$. We extend the concept of pure gap to {\bf c}-gap and obtain a criterion to decide when an $s$-tuple is a {\bf c}-gap at $s$ rational places on the curve. As an application, we obtain many families of pure gaps at two rational places on curves with many rational places.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weierstrass Pure Gaps From a Quotient of the Hermitian Curve

In this paper, by employing the results over Kummer extensions, we give an arithmetic characterization of pure gaps at many totally ramified places over the quotients of Hermitian curves, including the well-studied Hermitian curves as special cases. The cardinality of these pure gaps is explicitly investigated. In particular, the numbers of gaps and pure gaps at a pair of distinct places are de...

متن کامل

Symmetry, splitting rational places in extensions of function fields and generalization of the Hermitian function field

Let F/K be an algebraic function field in one variable over a finite field of constants K, i.e., F is a finite algebraic extension of K(x) where x ∈ F is transcendental over K. Let E be a finite separable extension of F . Let N(E) and g(E) denote the number of places of degree one (or rational places), and the genus, respectively, of E. Let [E : F ] denote the degree of this extension. In recen...

متن کامل

On Curves over Finite Fields with Many Rational Points

We study arithmetical and geometrical properties of maximal curves, that is, curves defined over the finite field Fq2 whose number of Fq2 -rational points reachs the Hasse-Weil upper bound. Under a hypothesis on non-gaps at rational points we prove that maximal curves are Fq2 -isomorphic to y q + y = x for some m ∈ Z.

متن کامل

Ray Class Fields of Global Function Fields with Many Rational Places

A general type of ray class fields of global function fields is investigated. Their systematic computation leads to new examples of curves over finite fields with many rational points compared to their genera.

متن کامل

IC/96/47 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON CURVES OVER FINITE FIELDS WITH MANY RATIONAL POINTS

We study arithmetical and geometrical properties of maximal curves, that is, curves defined over the finite field ¥q2 whose number of ¥q2 -rational points reachs the Hasse-Weil upper bound. Under a hypothesis on non-gaps at rational points we prove that maximal curves are ¥q2 -isomorphic to y q + y = x for some m £ Z + . MIRAMARE TRIESTE March 1996 1 E-mail: [email protected] E-mail: f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018